Датчики DHT11 и DHT22 – очень популярны в среде Ардуино и часто используются в проектах метеостанций и . В этой статье мы с вами узнаем, как можно использоватьэти сенсоры, как правильно подключать к платам Arduino Uno, Mega или Nano, какие библиотеки использовать для написания скетча. Данные датчики не выделяются особенным быстродействием и точностью, но они просты в использовании, их можно смело использовать в своих первых проектах в ввиду доступности и невысокой цены.

Датчик состоит из двух частей – емкостного датчика температуры и гигрометра. Первый используется для измерения температуры, второй – для влажности воздуха. Находящийся внутри чип может выполнять аналого-цифровые преобразования и выдавать цифровой сигнал, который считывается посредством микроконтроллера.

В большинстве случаев DHT11 или DHT22 доступен в двух вариантах: как отдельный датчик в виде пластикового корпуса с металлическими контактами или как готовый модуль с датчиком и припаянными элементами обвязки. Второй вариант гораздо проще использовать в реальных проектах и крайне рекомендуется для начинающих.

Датчик DHT11

  • Потребляемый ток – 2,5 мА (максимальное значение при преобразовании данных);
  • Измеряет влажность в диапазоне от 20% до 80%. Погрешность может составлять до 5%;
  • Применяется при измерении температуры в интервале от 0 до 50 градусов (точность – 2%)
  • Габаритные размеры: 15,5 мм длина; 12 мм широта; 5,5 мм высота;
  • Питание – от 3 до 5 Вольт;
  • Одно измерение в единицу времени (секунду). То есть, частота составляет 1 Гц;
  • 4 коннектора. Между соседними расстояние в 0,1 ”.

  • Питание – от 3 до 5 Вольт;
  • Максимальный ток при преобразовании – 2,5 мА;
  • Способен измерять влажность в интервале от 0% до 100%. Точность измерений колеблется от 2% до 5%;
  • Минимальная измеряемая температура – минус 40, максимальная – 125 градусов по Цельсию (точность измерений – 0,5);
  • Устройство способно совершать одно измерение за 2 секунд. Частота – до 0,5 ГЦ;
  • Габаритные размеры: 15,1 мм длина; 25 мм широта; 5,5 мм высота;
  • Присутствует 4 коннектора. Расстояние между соседними – 0,1 ‘;

Очевидно, что при использовании в ардуино датчика температуры и влажности DHT11 устройство выдаст менее точные значения, чем DHT22. У аналога больший диапазон измеряемых значений, но и цена соответствующая. Датчик температуры и влажности DHT22 , как и его аналог, имеет один цифровой выход, соответственно снимать показания можно не чаще, чем один раз в 1-2 секунды.

Где купить датчики по низким ценам

Традиционно самые низкие цены предлагают продавцы Aliexpress. Вот наиболее интересные варианты:

Цифровые датчики температуры и влажности DHT11 DHT22 DHT22 в виде модуля, совместимого с Arduino Uno R3 Беспроводной DHT22 для метеостанций на основеWeMos – собирается как бутерброд
Модуль беспроводного датчика DHT22 (с ESP8266) Недорогой вариант датчика температуры и влажности DHT11 дешевле 70 рублей! Качественно исполненный датчик DHT11 от RobotDyn

Подключение DHT11 к Arduino Uno

Если у вас на руках только сам датчик (синяя “решетчатая” пластиковая коробочка с 4-я металлическими контактами), то для подключения DHT11 вам понадобятся следующие детали:

    • Плата Arduino (или другой микроконтроллер, поддерживающий тайминг в микросекундах);
    • Монтажная (макетная плата);
    • Подтягивающий резистор номиналом в 10 кОм;
    • Светодиоды.

    Описание контактов DHT11:

    • Питание;
    • Вывод данных;
    • Не используется;
    • Земля (GND).

    Контакты нумеруются слева на право, если корпус датчика находится перед вами со стороны решетки, и «ноги» расположены внизу. Для правильной работы датчика нужно впаять резистор на 10 кОм между выходами сигнала и питанием.

    Если у вас в руках готовый модуль датчика, то подключение его к Arduino предельно упрощается: подключаете VCC к +5В, GND – к земле, третий контакт – к любому свободному пину на плате Arduino. Номер пина нужно будет затем указать скетче. Таким образом можно подключить датчика к разным платам Arduino: Uno, Arduino Mega, Arduino Nano, и другим.
    Подключение модуля датчика производится по следующей схеме:

    Датчик DHT22 /DHT11 Arduino
    + +5V
    out например, 2
    GND

    Внимание! Обязательно соблюдайте полярность подключения. В случае неправильного подключения датчик почти неминуемо выйдет из строя. Кроме того, при неправильном подключении пластиковый корпус датчик очень сильно нагреется и может обжечь вам руки. Будьте внимательны, не торопитесь!

    Для соответствия схемы примеру скетча, приведенному ниже, рекомендуется подключить сигнал с датчика влажности DHT11/DHT22 ко второму пину. Если у вас иной скетч, можно внести соответствующие правки в коде и изменить пин (пример ниже). Также подключаются дополнительные резисторы (этот шаг можно опустить, так как в плате уже установлен резистор).

    Скетч для работы с датчиками DHT11 и DHT22 в Arduino

    Перед написанием скетча давайте убедимся, что у нас установлена библиотека для работы с датчиками влажности и температуры . Скачать ее можно по ссылке https://github.com/adafruit/DHT-sensor-library . Загрузится папка под названием «DHT-sensor-library-master». Ее необходимо переименовать в DHT и переместить в папку libraries, что находится в корневой папке Arduino IDE. Далее необходимо загрузить готовый скетч или написать его самостоятельно, используя примеры. Типичный arduino скетч для работы с DHT11 и DHT22 выглядит следующим образом:

    #include "DHT.h" #define DHTPIN 2 // Тот самый номер пина, о котором упоминалось выше // Одна из следующих строк закоментирована. Снимите комментарий, если подключаете датчик DHT11 к arduino DHT dht(DHTPIN, DHT22); //Инициация датчика //DHT dht(DHTPIN, DHT11); void setup() { Serial.begin(9600); dht.begin(); } void loop() { delay(2000); // 2 секунды задержки float h = dht.readHumidity(); //Измеряем влажность float t = dht.readTemperature(); //Измеряем температуру if (isnan(h) || isnan(t)) { // Проверка. Если не удается считать показания, выводится «Ошибка считывания», и программа завершает работу Serial.println("Ошибка считывания"); return; } Serial.print("Влажность: "); Serial.print(h); Serial.print(" %\t"); Serial.print("Температура: "); Serial.print(t); Serial.println(" *C "); //Вывод показателей на экран }

    После загрузки скетча и подключения датчика, результат измерений можно посмотреть в окне монитора порта. Там будут выводиться значения температуры и влажности. Если что-то пошло не так, проверьте правильность подключения датчика, соответствие номера порта на плате Arduino и в скетче, надежность контактов.
    Если все работает и датчик дает показания, можете провести эксперименты. Например, поместить датчик в более холодное место или подышать на него, отслеживая при этом изменения. Если при запотевании уровень влажности увеличивается, значит датчик работает исправно. Подуйте на него тонкой струйкой – влажность уменьшится и температура вернется в норму.

    На этом этапе вы сможете заметить разницу между реальным значением температуры и показаниями датчика с ардуино. Точность DHT11 гораздо хуже точности DHT22, о чем мы уже говорили в этой статье. Если у вас есть оба датчика, подключите их к плате Arduino и сравните результаты. По моему опыту, в среднем расхождение составляет больше градуса. Учитывайте это, используя эти датчики в своих проектах.

    Резюме

    Давайте подведем итог. В статье рассмотрены вопросы подключения ардуино датчиков температуры и влажности DHT11 и DHT22 к плате . Датчики лучше приобретать в виде готовых модулей. Для работы с датчиками можно использовать библиотеку DHT для Arduino, которую легко скачать по указанной в статье ссылке. В скетче мы просто инициализируем объект для работы с датчиком и пользуемся его методами для получения температуры и влажности. Все полученные результаты мы можем посмотреть в окне монитора порта, сохранить и вывести на , послать через или .

    Используя DHT11 или DHT22 в проектах ардуино, можно строить элементы и умные теплицы. С помощью этих датчиков можно создавать исследовательские комплексы для климатических измерений и мониторинга окружающей среды. Варианты сфер применения датчиков практически неисчерпаемы, можно найти множество примеров на просторах интернета, в том числе на этом сайте. Надеюсь, с помощью нашей статьи проблем с подключением DHT11 и DHT22 к Arduino у вас не останется.

Итак, датчик DHT11 имеет следующие характеристики:

  • диапазон измеряемой относительной влажности - 20..90% с погрешностью до 5%,
  • диапазон измеряемых температур - 0..50°C с погрешностью до 2°C;
  • время реакции на изменения влажности - до 15 секунд, температуры - до 30 секунд;
  • минимальный период опроса - 1 секунда.

Как видно, датчик DHT11 не отличается особой точностью, да и диапазон температур не охватывает отрицательные значения, что вряд ли подойдёт для наружных измерений в холодное время года при нашем климате. Однако малая стоимость, малый размер и простота работы с ним частично перекрывают эти недостатки. На рисунке приведён внешний вид датчика и его размеры в миллиметрах.

2 Схема подключения датчика температуры и влажности DHT11

Рассмотрим схему подключения датчика температуры и влажности DHT11 к микроконтроллеру, в частности, к Arduino.


Давайте посмотрим, что показано на рисунке.

Обозначение на рисунке Описание Примечание
MCU Микроконтроллер или одноплатный компьютер Arduino / Raspberry Pi и др.
DHT11 Датчик температуры и влажности Выводы 1Pin, 2Pin и 4Pin задействованы в схеме, один из выводов датчика - 3-ий пин 3Pin - ни к чему не подключается.
DATA Шина данных Если длина соединительного кабеля от датчика к микроконтроллеру не превышает 20 метров, то эту шину рекомендуется подтянуть к питанию резистором 5,1 кОм; если больше 20 метров - то другой подходящий номинал (меньший).
VDD Питание датчика Допустимы напряжения от ~3,0 до ~5,5 вольт постоянного тока; если используется питание ~3,3 В, то желательно использовать питающий провод не длиннее 20 см.

Соберём рассмотренную схему. Я также по традиции включу в цепь логический анализатор, чтобы можно было изучить временную диаграмму информационного обмена с датчиком.



Сенсор DHT11 часто продаётся в виде готовой сборки с необходимой обвязкой - подтягивающими резистором и фильтрующим конденсатором (как на предыдущей фотографии). Для экспериментов с Arduino я рекомендую покупать именно такой.

3 Считывание данных с сенсора DHT11 при помощи Arduino

Давайте пойдём таким путём: скачаем библиотеку для датчика DHT11 , установим её стандартным способом (распаковав в директорию \libraries\ среды разработки для Arduino).

Напишем вот такой простенький скетч. Он будет выводить в последовательный порт компьютера каждые 2 секунды сообщения об относительной влажности и температуре, считанные с датчика DHT11.

#include // подключаем библиотеку dht11 sensor; // инициализация экземпляра датчика #define DHT11PIN 8 // вывод 8 будет шиной DATA void setup() { Serial.begin(9600); } void loop() { int chk = sensor.read(DHT11PIN); Serial.print("h="); Serial.print(sensor.humidity); Serial.print("%\t"); Serial.print("t="); Serial.print(sensor.temperature); Serial.println("C"); delay(2000); }

Загрузим этот скетч в Arduino. Подключимся к Arduino с помощью монитора COM-порта и увидим следующее:


Видно, что данные и о влажности, и о температуре считываются и выводятся в терминалку.

4 Временная диаграмма информационного обмена датчика температуры и влажности DHT11 с микроконтроллером

С помощью временной диаграммы, полученной с логического анализатора, разберёмся, как осуществляется информационный обмен.

Для связи с микроконтроллером датчик температуры и влажности DHT11 использует однопроводный последовательный пакетный интерфейс. Один информационный пакет длительностью около 4 мс содержит: 1 бит запроса от микроконтроллера, 1 бит ответа датчика и 40 битов данных от датчика (16 битов информации о влажности, 16 битов информации о температуре и 8 проверочных битов). Давайте подробнее рассмотрим временную диаграмму информационного обмена Arduino с датчиком DHT11.



Временная диаграмма информационного обмена сенсора DHT11 с микроконтроллером

Из рисунка видно, что есть два типа импульсов: короткие и длинные. Короткие в данном протоколе обмена обозначают нули, длинные импульсы - единицы.

Итак, первые два импульса - это запрос Arduino к DHT11 и, соответственно, ответ датчика. Далее идут 16 бит влажности. Причём они разделены на байты, старший и младший, старший слева. То есть на нашем рисунке данные о влажности такие: 0001000000000000 = 00000000 00010000 = 0x10 = 16% относительной влажности.

Данные о температуре, аналогично: 0001011100000000 = 00000000 00010111 = 0x17 = 23 градуса Цельсия.

Контрольная сумма - это всего-навсего арифметическое суммирование 4-х полученных байтов данных:
00000000 +
00010000 +
00000000 +
00010111 =
00100111 в двоичной системе или 0 + 16 + 0 + 23 = 39 в десятичной.

5 Работа с датчиком DHT11 без библиотеки

Теперь мы знаем достаточно для того чтобы написать собственную программу для работы с сенсором температуры и влажности DHT11 без использования сторонних библиотек. Напишем скетч, который будет опрашивать раз в секунду датчик и выводить в последовательный порт компьютера принятый пакет и данные о температуре, влажности, а также проверочный байт. На 13-ую ножку Arduino выведем контрольный сигнал и, подключившись в ней логическим анализатором, проверим, что мы верно считываем информацию от датчика.

Скетч для работы с DHT11 и Arduino без сторонних библиотек (разворачивается) #define DHT11pin 8 // для подключения шины DATA сенсора DHT11 #define LEDpin 13 // используем для контроля const int NUM_READS = 500; // зависит от частоты кварца и подбирается экспериментально long readsCounter = 0; // счётчик циклов чтения int reads; // сырой массив считанных значений void setup() { Serial.begin(9600); pinMode(DHT11pin, INPUT); pinMode(LEDpin, OUTPUT); } void loop() { if (readsCounter void initLink() { pinMode(DHT11pin, OUTPUT); digitalWrite(DHT11pin, LOW); delay(15); pinMode(DHT11pin, INPUT); } // Читает данные датчика DHT11 и записывает в массив: void readSerialDHT11() { int sensorValue = digitalRead(DHT11pin); reads = sensorValue; digitalWrite(LEDpin, sensorValue); // для проверки выводим на отдельную ножку readsCounter++; } // Обрабатывает массив данных за цикл с DHT11: void processDht11Data() { byte dht11Data = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // обработанный массив (биты пакета) int zeroLen = 1; // минимальная длительность бита "0" int oneLen = 3 * zeroLen; // примерная длительность бита "1" int wrongData = 6 * zeroLen; // допуск по длительности для данных int currentBitLen = 0; // длительность текущего бита int bitPosition = 0; // позиция бита в пакете for (int i=1; i = zeroLen) && (currentBitLen <= oneLen)) { dht11Data = 0; bitPosition++; } else if ((currentBitLen > oneLen) && (currentBitLen <= wrongData)) { dht11Data = 1; bitPosition++; } currentBitLen = 0; } else { if (reads[i] == HIGH) { // при сигнале HIGH currentBitLen += 1; // считаем длительность текущего бита } } } for (int i=0; i void getHumidTemperatureParity(byte data) { word humidity = 0; byte hLow = 0; byte hHi = 0; word temperature = 0; byte tLow = 0; byte tHi = 0; byte parity = 0; for (int i=1; i<9; i++){ //пропускаем первый импульс-подтверждение hLow = hLow | (data[i] << (8 - i)); } for (int i=9; i<17; i++){ hHi = hHi | (data[i] readsCounter = 0; }

Небольшая таблица даст дополнительные разъяснения к предлагаемому решению.

Функция Назначение

Когда вы уезжаете куда-то далеко на определенный срок времени? Ваши комнатные цветы некому поливать, поэтому приходится просить помощи у ваших соседей, которые, в свою очередь, могут халатно относиться к этому. В результате к вашему приезду растения будут чувствовать себя плохо. Чтобы этого не произошло, можно сделать систему автоматического полива. Для этой цели нам понадобится Arduino и датчик влажности почвы. В статье рассмотрим пример подключения и работы с датчиком FC-28. Он зарекомендовал себя с положительной стороны, с помощью него были созданы тысячи проектов.

О датчике FC-28

Датчиков для определения влажности земли великое множество, но самым популярным является модель FC-28. У него низкая цена, благодаря чему широко используется всеми радиолюбителями в своих проектах. Применяется датчик влажности почвы с Arduino. У него есть два зонда, которые проводят электрический ток через землю. Получается, что если почва влажная, то сопротивление между зондами меньше. При сухой земле, соответственно, сопротивление больше. Arduino принимает эти значения, сравнивает и при необходимости включает, например насос. Датчик способен работать как с цифровым режимом, так и с аналоговым, оба варианта подключения мы рассмотрим. Применяется FC-28 в основном в мелких проектах, например, при автоматическом поливе одного конкретного растения, так как использовать в больших масштабах его неудобно в силу размеров и минусов, которые мы также рассмотрим.

Где купить

Дело в том, что в российских магазинах датчики для работы с Arduino стоят относительно дорого. Средняя цена на этот датчик в России варьируется от 200 до 300 рублей, в то же время как в Aliexpress этот же датчик стоит всего лишь каких-то 30-50. Наценка огромная. Конечно, можно еще сделать датчик для измерения влажности почвы своими руками, но об этом ниже.

О подключении

Подключается датчик влажности к Arduino очень легко. В комплекте с ним идут компаратор и потенциометр для регулирования чувствительности датчика, а также для установки предельного значения при подключении с помощью цифрового выхода. Сигнал при выходе, как уже упоминалось выше, может быть цифровым и аналоговым.

Подключение с помощью цифрового выхода

Подключается практически так же, как и аналоговый:

  • VCC - 5V на Arduino.
  • D0 - D8 на плате на Arduino.
  • GND - земля.

Как уже упоминалось выше, на модуле датчика расположены компаратор и потенциометр. Работает все следующим образом: при помощи потенциометра мы устанавливаем предельное значение нашего датчика. FC-28 сравнивает значение с предельным, и после этого отправляет значение в Arduino. Допустим, значения датчика выше порогового, в таком случае датчик влажности почвы на Arduino передает 5V, если меньше - 0V. Все очень просто, но более точные значения - у аналогового режима, поэтому рекомендуется использовать его.

Электрическая схема подключения выглядит так, как показано на фото выше. образом

Программный код для Arduino при использовании цифрового режима приведен ниже.

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Что же делает наш код? Первым делом были обозначены две переменные. Первая переменная - led_pin - служит для обозначения светодиода, а вторая - для обозначения датчика влажности земли. Далее мы объявляем контакт светодиода как выход, и контакт датчика как вход. Это нужно для того, чтобы мы могли получить значени, и при необходимости включить светодиод, чтобы визуально увидеть, что значения датчика выше порогового. В цикле мы считываем значения с датчика. Если значение выше предельного - включаем светодиод, если ниже - выключаем. Вместо светодиода может быть и насос, тут все зависит от вас.

Аналоговый режим

Для подключения при помощи аналогового выхода потребуется работать с A0. Емкостной датчик влажности почвы в Arduino принимает значения от 0 до 1023. Подключаем датчик следующим образом:

  • VCC подключаем на 5V к Arduino.
  • GND на датчике подключаем к GND на плате Arduino.
  • A0 подключаем к A0 на Arduino.

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Читаем сенсор"); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Влажность "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Итак, что же делает этот программный код? Первым делом были заданы переменные. Первая переменная нужна, чтобы определить контакт датчика, а другая будет хранить результаты, которые мы будем получать при помощи датчика. Далее мы считываем данные. В цикле мы записываем в созданную нами переменную output_value значения с датчика. Затем рассчитывается процент влажности почвы, после чего выводим их на монитор порта. Электрическая схема подключения изображена ниже.

Своими руками

Выше было рассмотрено, как подключить датчик влажности почвы к Arduino. Проблема этих датчиков в том, что они недолговечные. Дело в том, что они очень сильно склонны к коррозии. Некоторые фирмы делают датчики со специальным покрытием, чтобы увеличить срок службы, но это все равно не то. Также рассматривается вариант использования датчика не часто, а только когда требуется. Например, есть программный код, где каждую секунду датчик считывает значения о влажности почвы. Можно продлить срок службы, если включать его, например, один раз в день. Но если и это вам не подходит, то можно сделать своими руками датчик влажности почвы. Arduino разницы не почувствует. В принципе, система такая же. Просто вместо двух сенсоров можно поставить свои и использовать при этом материал, который менее подвержен коррозии. Идеально, конечно, использовать золото, но, учитывая его цену, это выйдет очень дорого. Вообще, дешевле выходит покупать, учитывая цену FC-28.

Плюсы и минусы

В статье были рассмотрены варианты подключения датчика влажности почвы к Arduino, также были представлены примеры программного кода. FC-28 является действительно хорошим датчиком для определения влажности почвы, но какие же конкретные плюсы и минусы этого датчика?

Плюсы:

  • Цена. Этот датчик имеет очень низкую цену, поэтому каждый радиолюбитель сможет купить и соорудить свою систему автоматического полива для растений. Конечно, при работе с большими масштабами этот датчик не подойдет, но он для этого и не предназначен. Если нужен датчик мощнее - SM2802B, то за него и отдать придется немаленькую сумму.
  • Простота. Освоить работу с этим датчиком влажности почвы в Arduino может каждый. Всего несколько проводов, пара строк кода - и все. Контроль влажности почвы сделан.

Минусы:

  • Подверженность коррозии. Это единственный недостаток этих датчиков. Но, учитывая цену, на это и глаза можно закрыть. В первую очередь эти датчики были сделаны скорее для обучения, нежели для практического использования в больших проектах.
Датчик влажности почвы Arduino предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Подключение данного модуля к контроллеру позволяет автоматизировать процесс полива ваших растений, огорода или плантации (своего рода "умный полив").

Модуль состоит из двух частей: контактного щупа YL-69 и датчика YL-38, в комплекте идут провода для подключения.. Между двумя электродами щупа YL-69 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная - сопротивление меньше, ток - чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности. Щуп YL-69 соединен с датчиком YL-38 по двум проводам. Кроме контактов соединения с щупом, датчик YL-38 имеет четыре контакта для подключения к контроллеру.

  • Vcc – питание датчика;
  • GND – земля;
  • A0 - аналоговое значение;
  • D0 – цифровое значение уровня влажности.
Датчик YL-38 построен на основе компаратора LM393, который выдает напряжение на выход D0 по принципу: влажная почва – низкий логический уровень, сухая почва – высокий логический уровень. Уровень определяется пороговым значением, которое можно регулировать с помощью потенциометра. На вывод A0 подается аналоговое значение, которое можно передавать в контроллер для дальнейшей обработки, анализа и принятия решений. Датчик YL-38 имеет два светодиода, сигнализирующих о наличие поступающего на датчик питания и уровня цифрового сигналы на выходе D0. Наличие цифрового вывода D0 и светодиода уровня D0 позволяет использовать модуль автономно, без подключения к контроллеру.

Технические характеристики модуля

  • Напряжение питания: 3.3-5 В;
  • Ток потребления 35 мА;
  • Выход: цифровой и аналоговый;
  • Размер модуля: 16×30 мм;
  • Размер щупа: 20×60 мм;
  • Общий вес: 7.5 г.

Пример использования

Рассмотрим подключение датчика влажности почвы к Arduino. Создадим проект индикатора уровня влажности почвы для комнатного растения (ваш любимый цветок, который вы иногда забываете поливать). Для индикации уровня влажности почвы будем использовать 8 светодиодов. Для проекта нам понадобятся следующие детали:
  • Плата Arduino Uno
  • Датчик влажности почвы
  • 8 светодиодов
  • Макетная плата
  • Соединительные провода.
Соберем схему, показанную на рисунке ниже


Запустим Arduino IDE. Создадим новый скетч и внесем в него следующие строчки: // Датчик влажности почвы // http://сайт // контакт подключения аналогового выхода датчика int aPin=A0; // контакты подключения светодиодов индикации int ledPins={4,5,6,7,8,9,10,11}; // переменная для сохранения значения датчика int avalue=0; // переменная количества светящихся светодиодов int countled=8; // значение полного полива int minvalue=220; // значение критической сухости int maxvalue=600; void setup() { // инициализация последовательного порта Serial.begin(9600); // настройка выводов индикации светодиодов // в режим OUTPUT for(int i=0;i<8;i++) { pinMode(ledPins[i],OUTPUT); } } void loop() { // получение значения с аналогового вывода датчика avalue=analogRead(aPin); // вывод значения в монитор последовательного порта Arduino Serial.print("avalue=");Serial.println(avalue); // масштабируем значение на 8 светодиодов countled=map(avalue,maxvalue,minvalue,0,7); // индикация уровня влажности for(int i=0;i<8;i++) { if(i<=countled) digitalWrite(ledPins[i],HIGH); //зажигаем светодиод else digitalWrite(ledPins[i],LOW); // гасим светодиод } // пауза перед следующим получением значения 1000 мс delay(1000); } Аналоговый вывод датчика подключен к аналоговому входу Arduino, который представляет собой аналого-цифровой преобразователь (АЦП) с разрешением 10 бит, что позволяет на выходе получать значения от 0 до 1023. Значение переменных для полного полива (minvalue) и сильной сухости почвы (maxvalue) получим экспериментально. Большей сухости почвы соответствует большее значение аналогового сигнала. С помощью функции map масштабируем аналоговое значение датчика в значение нашего светодиодного индикатора. Чем больше влажность почвы, тем больше значение светодиодного индикатора (количество зажженных светодиодов). Подключив данный индикатор к цветку, мы издали можем видеть на индикаторе степень влажности и при определять необходимость полива.

Часто задаваемые вопросы FAQ

1. Не горит светодиод питания
  • Проверьте наличие и полярность подаваемого на датчик YL-38 питания (3,3 – 5 В).
2. При поливе почвы не загорается светодиод индикации влажности почвы
  • Настройте потенциометром порог срабатывания. Проверьте соединение датчика YL-38 с щупом YL-69.
3. При поливе почвы не изменяется значение выходного аналогового сигнала
  • Проверьте соединение датчика YL-38 с щупом YL-69.
  • Проверьте наличие щупа в земле.

Соединяем Arduino с датчиком влажности почвы FC-28, чтобы определить, когда ваша почва под растениями нуждается в воде.

В этой статье мы собираемся использовать датчик влажности почвы FC-28 с Ардуино. Этот датчик измеряет объемное содержание воды в почве и дает нам уровень влаги. Датчик дает нам на выходе аналоговые и цифровые данное. Мы собираемся подключить его в обоих режимах.

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Аналоговый режим

Для подключения датчика в аналоговом режиме нам потребуется использовать аналоговый выход датчика. Датчик влажности почвы FC-28 принимает аналоговые выходные значения от 0 до 1023.

Влажность измеряется в процентах, поэтому мы сопоставим эти значения от 0 до 100, а затем покажем их на последовательном мониторе (serial monitor). Вы можете установить различные значения влаги и повернуть водяную помпу "включено-выключено" согласно этим значениям.

Электрическая схема

Подключите датчик влажности почвы FC-28 к Ардуино следующим образом:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • A0 FC-28 → A0 Arduino

Код для аналогового выхода

Для аналогового выхода мы пишем такой код:

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Объяснение кода

Прежде всего, мы определили две переменные: одну для контакта датчика влажности почвы, а другую для хранения выхода датчика.

Int sensor_pin = A0; int output_value ;

В функции setup, команда Serial.begin(9600) поможет в общении между Arduino и серийным монитором. После этого, мы напечатаем "Reading From the Sensor ...” (англ. - считываем с датчика) на обычном дисплее.

Void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); }

В функции цикла, мы прочитаем значение от аналогового выхода датчика и сохраним значение в переменной output_value . Затем мы сопоставим выходные значения с 0-100, потому что влажность измеряется в процентах. Когда мы брали показания с сухого грунта, значение датчика было 550, а во влажном грунте значение датчика было 10. Мы сопоставили эти значения, чтобы получить значение влаги. После этого мы напечатали эти значения на последовательном мониторе.

Void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,10,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Цифровой режим

Для подключения датчика влажности почвы FC-28 в цифровом режиме мы подключим цифровой выход датчика к цифровому контакту Arduino.

Модуль датчика содержит потенциометр, который использован для того чтобы установить пороговое значение. Пороговое значение после этого сравнивается со значением выхода датчика используя компаратор LM393, который помещен на модуле датчика FC-28. Компаратор LM393 сравнивает значение выхода датчика и пороговое значение, и после этого дает нам выходное значение через цифровой вывод.

Когда значение датчика больше чем пороговое значение, цифровой выход передаст нам 5В, и загорится светодиод датчика. В противном случае, когда значение датчика будет меньше чем это пороговое значение на цифровой вывод передастся 0В и светодиод не загорится.

Электрическая схема

Соединения для датчика влажности почвы FC-28 и Ардуино в цифровом режиме следующие:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • D0 FC-28 → Пин 12 Arduino
  • Светодиод положительный → Вывод 13 Ардуино
  • Светодиод минус → GND Ардуино

Код для цифрового режима

Код для цифрового режима ниже:

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Объяснение кода

Прежде всего, мы инициализировали 2 переменные для соединения вывода светодиода и цифрового вывода датчика.

Int led_pin = 13; int sensor_pin = 8;

В функции setup мы объявляем пин светодиода как пин выхода, потому что мы включим светодиод через него. Мы объявили пин датчика как входной пин, потому как Ардуино будет принимать значения от датчика через этот вывод.

Void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); }

В функции цикла, мы считываем с вывода датчика. Если значение более высокое чем пороговое значение, то включится светодиод. Если значение датчика будет ниже порогового значения, то индикатор погаснет.

Void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

На этом вводный урок по работе с датчиком FC-28 для Ардуино мы завершаем. Успешных вам проектов.